tilelang.primitives.gemm.base module#

class tilelang.primitives.gemm.base.GemmBaseParams(A: tvm.tir.buffer.Buffer, B: tvm.tir.buffer.Buffer, C: tvm.tir.buffer.Buffer, transpose_A: bool = False, transpose_B: bool = False, block_row_warps: Optional[int] = None, block_col_warps: Optional[int] = None, warp_row_tiles: Optional[int] = None, warp_col_tiles: Optional[int] = None, chunk: Optional[int] = None, policy: tilelang.primitives.gemm.base.GemmWarpPolicy = (<GemmWarpPolicy.Square: 0>, ), k_pack: int = 1)#

Bases: object

A: Buffer#
B: Buffer#
C: Buffer#
block_col_warps: Optional[int] = None#
block_row_warps: Optional[int] = None#
chunk: Optional[int] = None#
property class_attributes#
get_warp_size() int#
infer_block_partition(threads: Optional[int]) None#

Infer and set block partition parameters (e.g., block_row_warps, block_col_warps, warp_row_tiles, warp_col_tiles, chunk) based on the shape of A and B. If these parameters are not already specified, the method will attempt to infer them automatically based on the given threads.

Parameters:

threads (Optional[int]) – The total number of threads in a block. Must be provided if any block partition parameter is not already set.

Raises:

AssertionError – If threads is None but any block partition parameter is missing, or if A and B have inconsistent shapes for GEMM.

k_pack: int = 1#
params_as_dict()#
policy: GemmWarpPolicy = (<GemmWarpPolicy.Square: 0>,)#
transpose_A: bool = False#
transpose_B: bool = False#
warp_col_tiles: Optional[int] = None#
warp_row_tiles: Optional[int] = None#
class tilelang.primitives.gemm.base.GemmWarpPolicy(value)#

Bases: IntEnum

Enumeration for GEMM Warp Partitioning Policies.

FullCol = 2#
FullRow = 1#
Square = 0#
compute_warp_partition(M, N, num_warps)#

Compute the warp partition (m_warp, n_warp) based on the given policy.

Parameters:
  • M (int) – The number of rows in the GEMM workload.

  • N (int) – The number of columns in the GEMM workload.

  • num_warps (int) – The total number of warps available.

Returns:

A tuple (m_warp, n_warp) representing the partitioning of warps.

Return type:

tuple

Raises:
  • ValueError – If the policy is invalid or the partitioning fails.

  • AssertionError – If M or N is not divisible by the required factor for FullRow or FullCol policies.

classmethod from_warp_partition(m_warp: int, n_warp: int) GemmWarpPolicy#

Determine the warp policy based on the given warp partitioning.

Parameters:
  • m_warp (int) – Number of warps in the row dimension

  • n_warp (int) – Number of warps in the column dimension

Returns:

The corresponding warp policy

Return type:

GemmWarpPolicy

Examples

>>> GemmWarpPolicy.from_block_row_cols(4, 1)  # All warps in rows
GemmWarpPolicy.FullRow
>>> GemmWarpPolicy.from_block_row_cols(1, 4)  # All warps in columns
GemmWarpPolicy.FullCol
>>> GemmWarpPolicy.from_block_row_cols(2, 2)  # Balanced distribution
GemmWarpPolicy.Square
is_full_col() bool#

Check if the policy is a full column partitioning.

Returns:

True if the policy is full column, False otherwise.

Return type:

bool

is_full_row() bool#

Check if the policy is a full row partitioning.

Returns:

True if the policy is full row, False otherwise.

Return type:

bool

is_square() bool#

Check if the policy is a square partitioning.

Returns:

True if the policy is square, False otherwise.

Return type:

bool

static to_prime_factors(num)#

Compute the prime factorization of a given number.

Parameters:

num (int) – The number to factorize.

Returns:

A list of prime factors of the number.

Return type:

list