tilelang.carver.template.conv module#

class tilelang.carver.template.conv.ConvTemplate(N: int, C: int, H: int, W: int, F: int, K: int, S: int, D: int, P: int, in_dtype: str = 'float16', out_dtype: str = 'float16', accum_dtype: str = 'float16', with_bias: bool = False)#

Bases: BaseTemplate

A template for convolution (Conv).

This class defines the computation for a matrix-matrix convolution with configurable parameters such as transposition, data types, and bias addition.

N#

The number of input samples processed simultaneously in a batch.

Type:

int

C#

The number of input feature maps.

Type:

int

H#

The height of the input feature maps.

Type:

int

W#

The width of the input feature maps.

Type:

int

F#

The number of filters (kernels) applied, determining output depth.

Type:

int

K#

The spatial dimensions of each convolutional filter.

Type:

int

S#

The step size by which the kernel slides across the input.

Type:

int

D#

The spacing between kernel elements, controlling receptive field expansion.

Type:

int

P#

The number of pixels added to input borders to control output spatial dimensions.

Type:

int

in_dtype#

Data type of input matrices.

Type:

str

out_dtype#

Data type of output matrix.

Type:

str

accum_dtype#

Data type used for accumulation.

Type:

str

with_bias#

Whether to add a bias term.

Type:

bool

C: int#
D: int#
F: int#
H: int#
K: int#
N: int#
P: int#
S: int#
W: int#
accum_dtype: str = 'float16'#
property class_attributes#

Returns the class attributes in dictionary form.

Returns:

Dictionary of class attributes.

Return type:

dict

get_hardware_aware_configs(arch=None, topk=10) List[Hint]#

Retrieves optimized hardware-aware configurations.

Parameters:
  • arch (TileDevice, optional) – The target hardware architecture.

  • topk (int, optional) – Number of top configurations to consider.

Returns:

A list of optimization hints for hardware acceleration.

Return type:

List[Hint]

in_dtype: str = 'float16'#
initialize_function() None#

Defines and initializes the convolution computation.

This method sets up placeholders for input matrices, computes the convolution using TVM’s compute API, and optionally applies bias and type casting.

Raises:

AssertionError – If N, C, H, W, F, K, S, D, P are not positive integers.

out_dtype: str = 'float16'#
params_as_dict()#

Returns the template parameters as a dictionary.

Returns:

Dictionary containing template parameter values.

Return type:

dict

with_bias: bool = False#