tilelang.language.proxy ======================= .. py:module:: tilelang.language.proxy .. autoapi-nested-parse:: The language interface for tl programs. Attributes ---------- .. autoapisummary:: tilelang.language.proxy.Buffer Classes ------- .. autoapisummary:: tilelang.language.proxy.BufferProxy tilelang.language.proxy.BaseTensorProxy tilelang.language.proxy.TensorProxy tilelang.language.proxy.FragmentBufferProxy tilelang.language.proxy.SharedBufferProxy tilelang.language.proxy.LocalBufferProxy tilelang.language.proxy.BaseTensor Functions --------- .. autoapisummary:: tilelang.language.proxy.ptr tilelang.language.proxy.make_tensor Module Contents --------------- .. py:class:: BufferProxy Buffer proxy class for constructing tir buffer. .. py:method:: __call__(shape, dtype='float32', data=None, strides=None, elem_offset=None, scope='global', align=0, offset_factor=0, buffer_type='', axis_separators=None) .. py:method:: __getitem__(keys) .. py:method:: from_ptr(pointer_var, shape, dtype = 'float32') Create a buffer from a pointer, shape, and data type. :param pointer_var: The pointer variable :param shape: The shape of the buffer :param dtype: The data type of the buffer (default: float32) :returns: A buffer created from the given parameters .. py:class:: BaseTensorProxy Base proxy class for tensor types with configurable defaults. This class serves as a foundation for different tensor proxy types, providing customizable default values for scope, alignment, and offset factors. It implements the core functionality for creating TIR buffers with specific memory configurations. .. py:attribute:: default_scope :value: 'global' .. py:attribute:: default_align :value: 0 .. py:attribute:: default_offset_factor :value: 0 .. py:method:: __call__(shape, dtype='float32', data=None, strides=None, elem_offset=None, scope=None, align=None, offset_factor=None, buffer_type='', axis_separators=None) .. py:method:: __getitem__(keys) .. py:method:: from_ptr(pointer_var, shape, dtype = 'float32') Create a buffer from a pointer, shape, and data type. :param pointer_var: The pointer variable :param shape: The shape of the buffer :param dtype: The data type of the buffer (default: float32) :returns: A buffer created from the given parameters .. py:class:: TensorProxy Bases: :py:obj:`BaseTensorProxy` Main tensor proxy class for global scope buffers. This class implements the default tensor proxy with global memory scope, inheriting all functionality from BaseTensorProxy without modifications. .. py:class:: FragmentBufferProxy Bases: :py:obj:`BaseTensorProxy` Proxy class for fragment memory buffers. This class represents tensor proxies specifically for local fragment memory, typically used in GPU tensor core operations. .. py:attribute:: default_scope :value: 'local.fragment' .. py:class:: SharedBufferProxy Bases: :py:obj:`BaseTensorProxy` Proxy class for shared memory buffers. This class represents tensor proxies for dynamic shared memory, commonly used in GPU shared memory operations. .. py:attribute:: default_scope :value: 'shared.dyn' .. py:class:: LocalBufferProxy Bases: :py:obj:`BaseTensorProxy` Proxy class for local memory buffers. This class represents tensor proxies for local memory scope, typically used for temporary computations in GPU kernels. .. py:attribute:: default_scope :value: 'local' .. py:data:: Buffer .. py:class:: BaseTensor(shape, dtype='float32', data=None, strides=None, elem_offset=None, scope=None, align=None, offset_factor=None, buffer_type='', axis_separators=None) .. py:method:: __class_getitem__(key) :classmethod: .. py:method:: __getitem__(key) .. py:method:: __setitem__(key, value) .. py:method:: from_ptr(pointer_var, shape, dtype = 'float32') :classmethod: .. py:function:: ptr(dtype = None, storage_scope = 'global', *, is_size_var = False) Create a TIR var that represents a pointer. :param dtype: The data type of the pointer. :type dtype: str :param storage_scope: The storage scope of the pointer. :type storage_scope: str :param is_size_var: Whether or not to return a SizeVar instead of Var. :type is_size_var: bool :returns: **res** -- The new tir.Var with type handle or casted expression with type handle. :rtype: PrimExpr .. py:function:: make_tensor(ptr, shape, dtype = 'float32')